Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype
نویسندگان
چکیده
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.
منابع مشابه
Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model ...
متن کاملIntestinal Epithelial-Specific mTORC1 Activation Enhances Intestinal Adaptation After Small Bowel Resection
BACKGROUND & AIMS Intestinal adaptation is a compensatory response to the massive loss of small intestine after surgical resection. We investigated the role of intestinal epithelial cell-specific mammalian target of rapamycin complex 1 (i-mTORC1) in intestinal adaptation after massive small bowel resection (SBR). METHODS We performed 50% proximal SBR on mice to study adaptation. To manipulate...
متن کاملMitochondrial function controls intestinal epithelial stemness and proliferation
Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss o...
متن کاملContributions Made by CDC25 Phosphatases to Proliferation of Intestinal Epithelial Stem and Progenitor Cells
The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after ...
متن کاملInhibition of intestinal cell proliferation by villous cell extract.
In order to verify the hypothesis that intestinal cell proliferation is controlled by a mitotic inhibitor, extracts of villous epithelial cells from different species were analysed to study their effect on the proliferation of various intestinal cells. Villous extracts from rat and rabbit strongly and reversibly inhibited cell division and DNA synthesis in a rat intestinal epithelial cell line ...
متن کامل